Компонент ОПОП 15.03.04 Автоматизация технологических процессов и производств, <u>Проектирование и эксплуатация систем автоматизации производственных процессов</u> наименование ОПОП

 $\Phi T \underline{\mathcal{J}}.05$ шифр дисциплины

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Дисциплины (модуля) <u>Х</u> 1	имические основы промышленных технологий
Разработчик (и): <u>Петрова Л.А.</u> Фио	Утверждено на заседании кафедры <u>химии</u> наименование кафедры протокол № <u>6</u> от <u>16.02.2024</u>
<u>директор ЕТИ</u> должность	- Заведующий кафедрой <u>химии</u>
_канд.техн.наук, доц ученая степень, звание	<u>ент</u> <u>Т.А. Дякина</u> подпись ФИО

1. Критерии и средства оценивания компетенций и индикаторов их достижения, формируемых дисциплиной (модулем)

Код и наименова-	Код и наименова- ние индикатора(ов)	Результаты обучения по дисциплине (модулю)					
ние компетенции	достижения Компетенции	Знать	Уметь	Владеть			
УК-1 Способен осуществлять по- иск, критический анализ и синтез информации, при- менять системный подход для реше- ния поставленных задач	ИД-1 _{УК-1} Выполняет поиск необходимой информации, ее критический анализ и обобщает результаты анализа для решения поставленной задачи ИД-2 _{УК-1} Использует системный подход для решения поставленных задач, предлагает способы их решения	Знать: основные законы химии естественнонаучных дисциплин, связанные с профессиональной деятельностью	Уметь: применять основные законы; осуществлять по- иск необходимой информа- ции; анализировать и обобщать результаты полу- ченных данных	Владеть: методами проведения физических измерений; - основными приемами обработки экспериментальных данных.			

2. Оценка уровня сформированности компетенций (индикаторов их достижения)

Показатели	Шкала и	критерии оценки уровня сформирова	анности компетенций (индикаторов и	х достижения)
оценивания			-	
компетенций	Ниже порогового	Пороговый	Продвинутый	Высокий
(индикаторов	(«неудовлетворительно»)	(«удовлетворительно»)	(«хорошо»)	(«отлично»)
их достижения)				
Полнота	Уровень знаний ниже минималь-	Минимально допустимый уровень	Уровень знаний в объёме, соответ-	Уровень знаний в объёме, соответ-
знаний	ных требований.	знаний.	ствующем программе подготовки.	ствующем программе подготовки.
	Имели место грубые ошибки.	Допущены не грубые ошибки.	Допущены некоторые погрешности.	
Наличие	При выполнении стандартных	Продемонстрированы основные	Продемонстрированы все основные	Продемонстрированы все основные
умений	заданий не продемонстрированы	умения.	умения.	умения.
	основные умения.	Выполнены типовые задания с не	Выполнены все основные задания с	Выполнены все основные и дополни-
	Имели место грубые ошибки.	грубыми ошибками.	некоторыми погрешностями. Вы-	тельные задания без ошибок и по-
		Выполнены все задания, но не в	полнены все задания в полном объё-	грешностей.
		полном объеме (отсутствуют пояс-	ме, но некоторые с недочетами.	Задания выполнены в полном объеме
		нения, неполные выводы)		без недочетов.
Наличие	При выполнении стандартных	Имеется минимальный набор навы-	Продемонстрированы базовые навы-	Продемонстрированы все основные
навыков	заданий не продемонстрированы	ков для выполнения стандартных	ки при выполнении стандартных	умения.
(владение опытом)	базовые навыки.	заданий с некоторыми недочетами.	заданий с некоторыми недочетами.	Выполнены все основные и дополни-
	Имели место грубые ошибки.			тельные задания без ошибок и по-
				грешностей.
				Продемонстрирован творческий под-
	70			ход к решению нестандартных задач.
Характеристика сфор-	Компетенции фактически не	Сформированность компетенций	Сформированность компетенций в	Сформированность компетенций пол-
мированности компе-	сформированы.	соответствует минимальным требо-	целом соответствует требованиям.	ностью соответствует требованиям.
тенции	Имеющихся знаний, умений,	ваниям.	Имеющихся знаний, умений, навы-	Имеющихся знаний, умений, навыков
	навыков недостаточно для реше-	Имеющихся знаний, умений, навы-	ков достаточно для решения стан-	в полной мере достаточно для реше-
	ния практических (профессио-	ков в целом достаточно для решения	дартных профессиональных задач.	ния сложных, в том числе нестандарт-
	нальных) задач.	практических (профессиональных)		ных, профессиональных задач.
	шш	задач.	иши	ИЛИ
	или	шш	или	Набрано зачетное количество баллов
	Зачетное количество баллов не	ИЛИ	Набрано зачетное количество баллов	согласно установленному диапазону
	набрано согласно установленно-	Набрано зачетное количество баллов	согласно установленному диапазону	
	му диапазону	согласно установленному диапазону		

3. Критерии и шкала оценивания заданий текущего контроля

3.1 Критерии и шкала оценивания лабораторных/практических работ.

Перечень лабораторных/практических работ, описание порядка выполнения и защиты работы, требования к результатам работы, структуре и содержанию отчета и т.п. представлены в методических материалах по освоению дисциплины (модуля) и в электронном курсе в ЭИОС МАУ.

Оценка/баллы ¹	Критерии оценивания				
Отлично	Задание выполнено полностью и правильно. Отчет по лабораторной/практической работе подготовлен качественно в соответствии с требованиями. Полнота ответов на вопросы преподавателя при защите работы.				
Хорошо	Задание выполнено полностью, но нет достаточного обоснования или при верном решении допущена незначительная ошибка, не влияющая на правильную последовательность рассуждений. Все требования, предъявляемые к работе, выполнены.				
Удовлетворительно	Задания выполнены частично с ошибками. Демонстрирует средний уровень выполнения задания на лабораторную/практическую работу. Большинство требований, предъявляемых к заданию, выполнены.				
Неудовлетворительно	Задание выполнено со значительным количеством ошибок на низком уровне. Многие требования, предъявляемые к заданию, не выполнены. ИЛИ Задание не выполнено.				

3.2 Критерии и шкала оценивания контрольной работы

Перечень контрольных заданий, рекомендации по выполнению представлены в методических материалах по освоению дисциплины (модуля) и в электронном курсе в ЭИОС МАУ.

В ФОС включен типовой вариант контрольного задания.

3 семестр Контрольная работа Термохимия, кинетика, химическое равновесие

Задание 1

Запишите уравнение реакции вашего варианта:

- 1) рассчитайте стандартную энтальпию и стандартную энтропию химической реакции;
- 2) покажите, какой из факторов процесса, энтальпийный или энтропийный, способствует самопроизвольному протеканию процесса в прямом направлении;
- 3) определите, в каком направлении при 298 К (прямом или обратном) будет протекать реакция, если все ее участники находятся в стандартном состоянии;
- 4) рассчитайте температуру, при которой равновероятны оба направления реакции. При каких температурах, выше или ниже рассчитанной, более вероятно протекание указанной реакции в прямом направлении.

Номер варианта	Уравнение реакции
1	$CO_2(\Gamma) + C(\kappa) = 2CO(\Gamma)$
2	$N_2(\Gamma) + 3H_2(\Gamma) = 2NH_3(\Gamma)$
3	$CO(\Gamma) + H_2(\Gamma) = C(\kappa) + H_2O(\Gamma)$

 $^{^{1}}$ Шкала оценивания определяется разработчиком ΦOC

_

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	$SO_2(\Gamma) + Cl_2(\Gamma) = SO_2Cl_2(\Gamma)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	$CH_4(\Gamma) + H_2O(\Gamma) = CO_2(\Gamma) + 3H_2(\Gamma)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	$2NO(\Gamma) + O_2(\Gamma) = 2NO_2(\Gamma)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	$PC1_5(\Gamma) = PC1_3(\Gamma) + C1_2(\Gamma)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	$2NO_2(\Gamma) = N_2O_4(\Gamma)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	$FeO(\kappa) + CO(\Gamma) = Fe(\kappa) + CO_2(\Gamma)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	$2H_2S(\Gamma) + SO_2(\Gamma) = 3S(\kappa) + 2H_2O(\Gamma)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	$C(\kappa) + 2H_2(\Gamma) = CH_4(\Gamma)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	$CH_4(\Gamma) + 2H_2O(\Gamma) = CO_2(\Gamma) + 4H_2(\Gamma)$
15 $CO_2(\Gamma) + 4H_2(\Gamma) = CH_4(\Gamma) + 2H_2O(\Gamma)$ 16 $CH_4(\Gamma) + 2O_2(\Gamma) = CO_2(\Gamma) + 2H_2O(\Gamma)$ 17 $2A1_2O_3(\kappa) + 6SO_2(\Gamma) + 3O_2(\Gamma) = 2A1_2(SO_4)_3(\kappa)$ 18 $2CuO(\kappa) + 4NO_2(\Gamma) + O_2 = 2Cu(NO_3)_2(\kappa)$ 19 $4NO_2(\kappa) + O_2(\Gamma) + 2H_2O(\kappa) = 4HNO_3(\kappa)$	13	$CO(\Gamma) + H_2O(\Gamma) = CO_2(\Gamma) + H_2(\Gamma)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	$Fe_2O_3(\kappa) + 3H_2(\Gamma) = 2Fe(\kappa) + 3H_2O(\Gamma)$
17 $2A1_2O_3(\kappa) + 6SO_2(r) + 3O_2(r) = 2A1_2(SO_4)_3(\kappa)$ 18 $2CuO(\kappa) + 4NO_2(r) + O_2 = 2Cu(NO_3)_2(\kappa)$ 19 $4NO_2(\kappa) + O_2(r) + 2H_2O(\kappa) = 4HNO_3(\kappa)$	15	$CO_2(\Gamma) + 4H_2(\Gamma) = CH_4(\Gamma) + 2H_2O(\Gamma)$
18 $2CuO(\kappa) + 4NO_2(r) + O_2 = 2Cu(NO_3)_2(\kappa)$ 19 $4NO_2(\kappa) + O_2(r) + 2H_2O(\kappa) = 4HNO_3(\kappa)$	16	$CH_4(\Gamma) + 2O_2(\Gamma) = CO_2(\Gamma) + 2H_2O(\Gamma)$
19 $4NO_2(\kappa) + O_2(\Gamma) + 2H_2O(\kappa) = 4HNO_3(\kappa)$	17	$2A1_2O_3(\kappa) + 6SO_2(\Gamma) + 3O_2(\Gamma) = 2A1_2(SO_4)_3(\kappa)$
	18	$2\text{CuO}(\kappa) + 4\text{NO}_2(\Gamma) + \text{O}_2 = 2\text{Cu}(\text{NO}_3)_2(\kappa)$
20 $2H_2O(x) + 2SO_2(r) + O_2(r) = 2H_2SO_4(\kappa)$	19	$4NO_2(\kappa) + O_2(\Gamma) + 2H_2O(\kappa) = 4HNO_3(\kappa)$
	20	$2H_2O(x) + 2SO_2(r) + O_2(r) = 2H_2SO_4(\kappa)$

Задание 2

Напишите выражение зависимости скорости прямой и обратной реакции от концентрации реагирующих веществ для следующих процессов. Как изменятся скорости прямой и обратной реакций, если увеличить давление в системе в 2 раза?

Вариант	Уравнения реакций	Вариант	Уравнения реакций
1	$H_2(\Gamma) + l_2(\Gamma) \leftrightarrow 2HI(\Gamma)$	16	$FeO(TB) + CO(\Gamma) \leftrightarrow Fe(TB) + CO_2(\Gamma)$
2	$2NO(\Gamma) + Cl_2(\Gamma) \leftrightarrow 2NOCl(\Gamma)$	17	$H_2(\Gamma) + S(TB) \leftrightarrow H_2S(\Gamma)$
3	$CaO(TB) + CO_2(\Gamma) \leftrightarrow CaCO_3(TB)$	18	$Si(TB)+2H_2O(\Gamma) \leftrightarrow SiO_2(TB)+2H_2(\Gamma)$
4	$CO(\Gamma) + H_2O(\Gamma) \leftrightarrow CO_2(\Gamma) + H_2(\Gamma)$	19	$2NO(\Gamma) + H_2(\Gamma) \longleftrightarrow N_2O(\Gamma) + H_2O(\Gamma)$
5	$PCI_5(\Gamma) \leftrightarrow P CI_3(\Gamma) + Cl_2(\Gamma)$	20	$2H_2(\Gamma) + O_2(\Gamma) \leftrightarrow 2H_2O(\Gamma)$
6	$2SO_2(\Gamma) + O_2(\Gamma) \leftrightarrow SO_3(\Gamma)$	21	$Cu_2O(TB) + 2HC1(\Gamma) \leftrightarrow 2CuCl(TB) + H_2O(\Gamma)$
7	$C_2H_2(\Gamma) + H_2(\Gamma) \leftrightarrow C_2H_4(\Gamma)$	22	$C(TB) + CO_2(\Gamma) \leftrightarrow 2CO(\Gamma)$
8	$2NO_2(\Gamma) \leftrightarrow N_2O_4(\Gamma)$	23	$COCl_2(\Gamma) \leftrightarrow Cl_2(\Gamma) + CO(\Gamma)$
9	$2\text{CO}(\Gamma) + \text{O}_2(\Gamma) \leftrightarrow 2\text{CO}_2(\Gamma)$	24	$S(TB) + 2CO_2(\Gamma) \leftrightarrow SO_2(\Gamma) + 2CO(\Gamma)$
10	$SO_2(\Gamma) + C1_2(\Gamma) \leftrightarrow SO_2Cl_2(\Gamma)$	25	$Fe_2O_3(TB) + 3CO(\Gamma) \leftrightarrow 2Fe(TB) + 3CO_2(\Gamma)$
11	$4HCl(\Gamma) + O_2(\Gamma) \leftrightarrow 2Cl_2(\Gamma) + 2H_2O(\Gamma)$	26	$Cu_2S(TB) + 2O_2(\Gamma) \leftrightarrow 2CuO(TB) + SO_2(\Gamma)$
12	$C(TB) + H_2O(\Gamma) \leftrightarrow CO(\Gamma) + H_2(\Gamma)$	27	$2NO(\Gamma) + O_2(\Gamma) \leftrightarrow 2NO_2(\Gamma)$
13	$Fe(TB) + H_2S(\Gamma) \leftrightarrow H_2(\Gamma) + FeS(TB)$	28	$2N_2(\Gamma) + 6H_2O(\Gamma) \leftrightarrow 4NH_3(\Gamma) + 3O_2(\Gamma)$
14	$N_2(\Gamma) + 3H_2(\Gamma) \leftrightarrow 2NH_3(\Gamma)$	29	$2\text{CO}(\Gamma) + 2\text{H}_2(\Gamma) \leftrightarrow \text{CH}_4(\Gamma) + \text{CO}_2(\Gamma)$
15	$Fe_3O_4(TB) + H_2(\Gamma) \leftrightarrow 3FeO(TB) + H_2O(\Gamma)$	30	$H_2(\Gamma) + B\Gamma_2(\Gamma) \leftrightarrow 2HBr(\Gamma)$

Задание 3 Во сколько раз увеличится скорость химической реакции при повышении температуры от T_{l_2} ${}^{o}C$ до T_{2} , ${}^{o}C$, если γ имеет определенное значение?

Вариант	$T_{l}, {}^{o}C$	T_2 , oC	γ	Вариант	T_{I} , ${}^{o}C$	T_2 , oC	γ
1	0	50	3	11	40	60	3
2	40	80	2	12	30	60	2
3	70	100	3	13	20	50	2
4	30	70	2	14	40	60	3
5	80	130	2	15	0	20	2
6	20	70	2	16	10	20	2
7	20	80	2	17	30	70	3
8	20	40	2	18	30	60	2
9	0	10	3	19	30	50	3
10	10	40	2	20	40	80	2

Реакция при температуре 50° С протекает за 3 мин. Температурный коэффициент скорости реакции равен 2. За какое время закончится эта реакция при T, ${}^{\circ}$ С?

Вариант	T, °C	Вариант	T, °C
21	30	26	80
22	100	27	90
23	10	28	40
24	70	29	60
25	20	30	110

Задание 4

В системе происходит обратимая реакция. Запишите выражение для константы равновесия. Как надо изменить: а) температуру, б) давление, в) концентрации исходных веществ, чтобы сместить равновесие в сторону продуктов реакции?

Вариант	Уравнения реакций	Вариант	Уравнения реакций
1	$H_2(\Gamma) + S(\kappa) \leftrightarrow H_2S(\Gamma), \ \Delta H = -20,9\kappa$ Дж	16	$C_2H_6(\Gamma) \leftrightarrow H_2(\Gamma) + C_2H_4(\Gamma), \Delta H > 0$
2	$2\text{CO}(\Gamma) + \text{O}_2(\Gamma) \leftrightarrow 2\text{CO}_2(\Gamma), \Delta H < 0$	17	$3C(TB) + CaO(TB) \leftrightarrow CaC_2(TB) + CO(\Gamma),$ $\Delta H > 0$
3	$H_2(\Gamma) + Cl_2(\Gamma) \leftrightarrow 2HCl(\Gamma), \Delta H = 184$ кДж	18	$H_2S(\Gamma) \leftrightarrow H_2(\Gamma) + S(TB), \Delta H > 0$
4	$H_2(\Gamma) + l_2(\Gamma) \leftrightarrow 2HI(\Gamma), \Delta H > 0$	19	$2HI(\Gamma) \leftrightarrow I_2(\Gamma) + H_2(\Gamma), \Delta H < 0$
5	$MgO(TB) + CO_2(\Gamma) \leftrightarrow MgCO_3(TB), \Delta H < 0$	20	$N_2(\Gamma) + 3H_2(\Gamma) \leftrightarrow 2NH_3(\Gamma), \Delta H = -92,4\kappaДж$
6	$FeO(TB) + H_2(\Gamma) \leftrightarrow Fe(TB) + H_2O(\Gamma), \Delta H > 0$	21	$C_4H_{10}(\Gamma) \leftrightarrow C_4H_8(\Gamma) + H_2(\Gamma), \Delta H > 0$
7	$\mathrm{CO}_2(\Gamma) + \mathrm{C}(\mathrm{TB}) \leftrightarrow 2\mathrm{CO}(\Gamma), \Delta \mathrm{H} = 173 \ \mathrm{кДж}$	22	$N_2(\Gamma) + O_2(\Gamma) \leftrightarrow 2NO(\Gamma), \Delta H > 0$
8	$2N_2(\Gamma) + O_2(\Gamma) \leftrightarrow 2N_2O(\Gamma), \Delta H > 0$	23	$H_2(\Gamma) + B\Gamma_2(\Gamma) \leftrightarrow 2HB\Gamma(\Gamma), \Delta H < 0$
9	$2C(TB) + O_2(\Gamma) \leftrightarrow 2CO(\Gamma), \Delta H < 0$	24	$C_4H_8(\Gamma) + H_2(\Gamma) \leftrightarrow C_4H_{10}(\Gamma), \Delta H < 0$
10	$4NH_3(\Gamma) + 3O_2(\Gamma) \leftrightarrow 2N_2(\Gamma) + 6H_2O(\Gamma), \Delta H > 0$	25	$N_2O_4(\Gamma) \leftrightarrow 2NO_2(\Gamma), \Delta H > 0$
11	$4HC1(\Gamma) + O_2(\Gamma) \leftrightarrow 2C1_2(\Gamma) + 2H_2O(\Gamma),$ $\Delta H = -116,4 \ кДж$	26	$CS_2(\mathfrak{R}) + 3O_2(\mathfrak{r}) \leftrightarrow CO_2(\mathfrak{r}) + 2SO_2(\mathfrak{r}), \Delta H < 0$

12	$2SO_2(\Gamma) + O_2(\Gamma) \leftrightarrow 2SO_3(ж), \Delta H = -384,2$ кДж	27	$2H_2(\Gamma) + O_2(\Gamma) \leftrightarrow 2H_2O(ж), \Delta H < 0$
13	$CaO(тв) + CO_2(г) \leftrightarrow CaCO_3(тв),$ $\Delta H = -178 \kappa Дж$	28	$NH_3(\Gamma) + HCl(\Gamma) \leftrightarrow NH_4Cl(TB), \Delta H < 0$
14	$2NO(\Gamma) + O_2(\Gamma) \leftrightarrow 2NO_2(\Gamma), \Delta H < 0$		$CaCO_3(тв) \leftrightarrow CaO(тв) + CO_2(г),$ $\Delta H = -178 \text{ кДж}$
15	$BaO(TB) + CO_2(\Gamma) \leftrightarrow BaCO_3(TB), \Delta H < 0$	30	$C_3H_6(\Gamma) + H_2(\Gamma) \leftrightarrow C_3H_8(\Gamma), \Delta H < 0$

4. Критерии и шкала оценивания результатов обучения по дисциплине при проведении промежуточной аттестации - зачет

<u>Критерии и шкала оценивания результатов освоения дисциплины (модуля)</u> <u>с зачетом</u>

Если обучающийся набрал зачетное количество баллов согласно установленному диапазону по дисциплине (модулю), то он считается аттестованным.

Оценка	Баллы	Критерии оценивания
Зачтено	60 - 100	Набрано зачетное количество баллов согласно установленному диапазону
Незачтено	менее 60	Зачетное количество согласно установленному диапазону баллов не набрано

5. <u>Задания диагностической работы</u> для оценки результатов обучения по дисциплине (модулю) в рамках внутренней и внешней независимой оценки качества образования

ФОС содержит задания для оценивания знаний, умений и навыков, демонстрирующих уровень сформированности компетенций и индикаторов их достижения в процессе освоения дисциплины (модуля).

Комплект заданий разработан таким образом, чтобы осуществить процедуру оценки каждой компетенции, формируемых дисциплиной (модулем), у обучающегося в письменной форме.

Примерный набор тестовых вопросов

№ зада-	Вопрос
ния	
1.	Выберите правильное утверждение: цинк в контакте с медью в среде элек-
	тролита является:
	1) анодом;
	2) катодом.
2.	Электронная конфигурация $1s^22s^22p^63s^23p^3$ соответствует атому:
	1) алюминия; 2) азота; 3) фосфора; 4) серы.
3.	С увеличением порядкового номера элемента периодически повторяются:
	1) заряд ядра атома;
	2) строение внешних электронных уровней;
	3) химические свойства элементов;
	4) общее число электронов.
4.	Какую химическую связь называют ковалентной:
	1) связь между атомами, осуществляемая общей для этих атомов парой элек-
	тронов;
	2) связь за счет взаимодействия противоположно заряженных ионов;
	3) связь за счет совокупности электронов, свободно перемещающихся между
	положительно заряженными ионами в кристалле;

	4) связь за счет электростатического взаимодействия молекулярных диполей.
5.	Выберите ряд металлов, которые могут быть катодным покрытием для желе-
	за:
	1) медь, олово, цинк;
	2) медь, олово, серебро;
	3) алюминий, хром, серебро.
6.	Какие металлы будут реагировать с разбавленной серной кислотой?
	1) медь; 2) цинк, железо 3) алюминий, никель 4) серебро, золото; 5) все.
7.	Как изменяются кислотно-основные свойства в ряду:
	$MnO \rightarrow MnO_2 \rightarrow MnO_3 \rightarrow Mn_2O_7$?
	1) усиливаются основные свойства;
	2) не изменяются;
	3) усиливаются кислотные свойства;
	4) ослабевают кислотные свойства.
8.	Соли двухвалентного железа в водных растворах дают:
	1) кислую среду;
	2) щелочную среду;
	3) нейтральную среду.
9.	Элементы II-A группы являются:
9.	1) сильными окислителями;
	3) сильными восстановителями;
	2) слабыми восстановителями;
	4) слабыми окислителями.
10.	Определите роль водорода в реакции: $HCl + Zn \rightarrow ZnCl_2 + H_2$.
10.	1) восстановитель;
	2) окислитель;
	3) реакция не относится к ОВР.
11.	В соответствии с законом Гесса тепловой эффект реакции равен:
11.	1) сумме теплот образования продуктов реакции;
	2) сумме теплот образования исходных веществ;
	3) сумме теплот образования продуктов реакции за вычетом суммы теплот
	образования исходных веществ;
	4) сумме теплот образования исходных веществ за вычетом суммы теплот
12.	образования продуктов реакции.
	Какие из следующих утверждений верны для реакций, протекающих в стандартных условиях?
	± *
	1) эндотермические реакции не могут протекать самопроизвольно; 2) эндотермические реакции могут протекать при достаточно низких темпе-
	ратурах;
	3) эндотермические реакции могут протекать при высоких температурах,
	если $\Delta S > 0$;
	4) эндотермические реакции могут протекать при высоких температурах,
10	если ΔS<0.
13.	Тепловой эффект реакции $SO_{2(\Gamma)} + 2H_2S_{(\Gamma)} = 3S_{(TB)} + 2H_2O_{(ж)}$ равен -234,50
	кДж.
	Определите стандартную теплоту (энтальпию) образования $H_2S_{(r)}$, если
	$\Delta H^{\circ}_{298}(SO_2) = -296,9 \text{ кДж/моль}; \Delta H^0 298(H_2O_{\mathscr{R}}) = -285,8 \text{ кДж/моль}.$
	1) +20,1 кДж; 2) - 20,1 кДж; 3) + 66,4 кДж; 4) - 66,4 кДж.
14.	Укажите гомогенную систему:
	1) $3\text{Fe} + 4\text{H}_2\text{O}_{(\text{nap})} = \text{Fe}_3\text{O}_4 + 4\text{H}_{2(r)}$;
	$(2) C_{(TB)} + O_{2(\Gamma)} = CO_{2(\Gamma)};$

	(3) $CO_{(\Gamma)} + 2H_{2(\Gamma)} = CH_3OH_{(\Gamma)}$;
	(4) $2Cr + 3C1_{2(r)} = 2CrC1_3$.
15.	Как изменится скорость реакции $CO_{(r)} + C1_{2 (r)} = COC1_{2(r)}$, если давление в системе увеличить в 4 раза? 1) увеличится в 8 раз;
	2) увеличится в 16 раз;3) уменьшится в 8 раз;
	4) уменьшится в 16 раз.
16.	$2H_2(\Gamma)+O_2(\Gamma) \leftrightarrow 2H_2O(ж)$: Δ H=-120,89 кДж. Соотнесите:
	воздействие: смещение равновесия:
	1) увеличили давление; а) сместится вправо;
	2) повысили температуру; б) сместится влево;
	3) понизили температуру; в) не сместится.
	4) уменьшили давление.